
An Introduction To The

Backpropagation Algorithm

MCA V sem

(Associate Prof.) Dr. Mahadev

9/11/2019 Copyright G. A. Tagliarini, PhD 2

Basic Neuron Model In A

Feedforward Network

• Inputs xi arrive through

pre-synaptic connections

• Synaptic efficacy is

modeled using real

weights wi

• The response of the

neuron is a nonlinear

function f of its weighted

inputs

9/11/2019 Copyright G. A. Tagliarini, PhD 3

Inputs To Neurons

• Arise from other neurons or from outside the

network

• Nodes whose inputs arise outside the network

are called input nodes and simply copy values

• An input may excite or inhibit the response of

the neuron to which it is applied, depending

upon the weight of the connection

9/11/2019 Copyright G. A. Tagliarini, PhD 4

Weights

• Represent synaptic efficacy and may be

excitatory or inhibitory

• Normally, positive weights are considered as

excitatory while negative weights are thought

of as inhibitory

• Learning is the process of modifying the

weights in order to produce a network that

performs some function

9/11/2019 Copyright G. A. Tagliarini, PhD 5

Output

• The response function is normally nonlinear

• Samples include

– Sigmoid

– Piecewise linear

x
e

xf

1

1
)(

xif

xifx
xf

,0

,
)(

9/11/2019 Copyright G. A. Tagliarini, PhD 6

Backpropagation Preparation

• Training Set
A collection of input-output patterns that are used to train the
network

• Testing Set
A collection of input-output patterns that are used to assess
network performance

• Learning Rate-η
A scalar parameter, analogous to step size in numerical
integration, used to set the rate of adjustments

9/11/2019 Copyright G. A. Tagliarini, PhD 7

Network Error

• Total-Sum-Squared-Error (TSSE)

• Root-Mean-Squared-Error (RMSE)

patterns outputs

actualdesiredTSSE
2

)(
2

1

outputspatterns

TSSE
RMSE

*##

*2

9/11/2019 Copyright G. A. Tagliarini, PhD 8

A Pseudo-Code Algorithm

• Randomly choose the initial weights

• While error is too large

– For each training pattern (presented in random order)

• Apply the inputs to the network

• Calculate the output for every neuron from the input layer, through the
hidden layer(s), to the output layer

• Calculate the error at the outputs

• Use the output error to compute error signals for pre-output layers

• Use the error signals to compute weight adjustments

• Apply the weight adjustments

– Periodically evaluate the network performance

9/11/2019 Copyright G. A. Tagliarini, PhD 9

Possible Data Structures

• Two-dimensional arrays

– Weights (at least for input-to-hidden layer and hidden-to-output layer

connections)

– Weight changes (Dij)

• One-dimensional arrays

– Neuron layers

• Cumulative current input

• Current output

• Error signal for each neuron

– Bias weights

9/11/2019 Copyright G. A. Tagliarini, PhD 10

Apply Inputs From A Pattern

• Apply the value of each

input parameter to each

input node

• Input nodes compute only

the identity function

Feedforward

In
p

u
ts

O
u

tp
u

ts

9/11/2019 Copyright G. A. Tagliarini, PhD 11

Calculate Outputs For Each Neuron

Based On The Pattern

• The output from neuron j for
pattern p is Opj where

 and

 k ranges over the input indices
and Wjk is the weight on the
connection from input k to
neuron j

Feedforward

In
p

u
ts

O
u

tp
u

ts

jnetjpj
e

netO

1

1
)(

k

kjpkbiasj WOWbiasnet *

9/11/2019 Copyright G. A. Tagliarini, PhD 12

Calculate The Error Signal For Each

Output Neuron

• The output neuron error signal dpj is given by

dpj=(Tpj-Opj) Opj (1-Opj)

• Tpj is the target value of output neuron j for

pattern p

• Opj is the actual output value of output neuron

j for pattern p

9/11/2019 Copyright G. A. Tagliarini, PhD 13

Calculate The Error Signal For Each

Hidden Neuron

• The hidden neuron error signal dpj is given by

 where dpk is the error signal of a post-synaptic
neuron k and Wkj is the weight of the
connection from hidden neuron j to the post-
synaptic neuron k

kj

k

pkpjpjpj WOO dd)1(

9/11/2019 Copyright G. A. Tagliarini, PhD 14

Calculate And Apply Weight

Adjustments

• Compute weight adjustments DWji at time t
by

DWji(t)= η dpj Opi

• Apply weight adjustments according to

Wji(t+1) = Wji(t) + DWji(t)

• Some add a momentum term a*DWji(t-1)

9/11/2019 Copyright G. A. Tagliarini, PhD 15

An Example: Exclusive “OR”

• Training set

– ((0.1, 0.1), 0.1)

– ((0.1, 0.9), 0.9)

– ((0.9, 0.1), 0.9)

– ((0.9, 0.9), 0.1)

• Testing set

– Use at least 121 pairs equally spaced on the unit
square and plot the results

– Omit the training set (if desired)

9/11/2019 Copyright G. A. Tagliarini, PhD 16

An Example (continued): Network

Architecture
in

p
u

ts

o
u

tp
u

t(
s)

9/11/2019 Copyright G. A. Tagliarini, PhD 17

An Example (continued): Network

Architecture

Sample

input

0.1

0.9

Target

output

0.9 1

1

1

9/11/2019 Copyright G. A. Tagliarini, PhD 18

Feedforward Network Training by

Backpropagation: Process Summary

• Select an architecture

• Randomly initialize weights

• While error is too large

– Select training pattern and feedforward to find
actual network output

– Calculate errors and backpropagate error signals

– Adjust weights

• Evaluate performance using the test set

9/11/2019 Copyright G. A. Tagliarini, PhD 19

An Example (continued): Network

Architecture

Sample

input

0.1

0.9

Actual

output

??? 1

1

1

??

??

??

??

??

??

??

??
??

Target

output

0.9

