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Basic Neuron Model In A 

Feedforward Network 

• Inputs xi arrive through 

pre-synaptic connections 

• Synaptic efficacy is 

modeled using real 

weights wi 

• The response of the 

neuron is a nonlinear 

function f of its weighted 

inputs 
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Inputs To Neurons 

• Arise from other neurons or from outside the 

network 

• Nodes whose inputs arise outside the network 

are called input nodes and simply copy values 

• An input may excite or inhibit the response of 

the neuron to which it is applied, depending 

upon the weight of the connection 
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Weights 

• Represent synaptic efficacy and may be 

excitatory or inhibitory 

• Normally, positive weights are considered as 

excitatory while negative weights are thought 

of as inhibitory 

• Learning is the process of modifying the 

weights in order to produce a network that 

performs some function 
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Output 

• The response function is normally nonlinear 

• Samples include 

– Sigmoid 

 

  

– Piecewise linear 
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Backpropagation Preparation 

• Training Set 
A collection of input-output patterns that are used to train the 
network 

• Testing Set 
A collection of input-output patterns that are used to assess 
network performance 

• Learning Rate-η 
A scalar parameter, analogous to step size in numerical 
integration, used to set the rate of adjustments  
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Network Error 

• Total-Sum-Squared-Error (TSSE) 

 

 

• Root-Mean-Squared-Error (RMSE) 
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A Pseudo-Code Algorithm 

• Randomly choose the initial weights 

• While error is too large 

– For each training pattern (presented in random order) 

• Apply the inputs to the network 

• Calculate the output for every neuron from the input layer, through the 
hidden layer(s), to the output layer 

• Calculate the error at the outputs 

• Use the output error to compute error signals for pre-output layers 

• Use the error signals to compute weight adjustments 

• Apply the weight adjustments 

– Periodically evaluate the network performance  
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Possible Data Structures 

• Two-dimensional arrays 

– Weights (at least for input-to-hidden layer and hidden-to-output layer 

connections) 

– Weight changes (Dij) 

• One-dimensional arrays 

– Neuron layers 

• Cumulative current input  

• Current output 

• Error signal for each neuron 

– Bias weights 
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Apply Inputs From A Pattern 

• Apply the value of each 

input parameter to each 

input node 

• Input nodes compute only 

the identity function 

Feedforward 
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Calculate Outputs For Each Neuron 

Based On The Pattern 

• The output from neuron j for 
pattern p is Opj where 

 

 

 

 and 

 

 

 k ranges over the input indices 
and Wjk is the weight on the 
connection from input k to 
neuron j 
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Calculate The Error Signal For Each 

Output Neuron 

• The output neuron error signal dpj is given by 

dpj=(Tpj-Opj) Opj (1-Opj) 

• Tpj is the target value of output neuron j for 

pattern p 

• Opj is the actual output value of output neuron 

j for pattern p 
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Calculate The Error Signal For Each 

Hidden Neuron 

• The hidden neuron error signal dpj is given by 

 

 

 

 where dpk is the error signal of a post-synaptic 
neuron k and Wkj is the weight of the 
connection from hidden neuron j to the post-
synaptic neuron k  
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Calculate And Apply Weight 

Adjustments 

• Compute weight adjustments DWji  at time t 
by 
 
DWji(t)= η dpj Opi 

 

• Apply weight adjustments according to 
 
Wji(t+1) = Wji(t) + DWji(t) 
 

• Some add a momentum term a*DWji(t-1) 
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An Example: Exclusive “OR” 

• Training set  

– ((0.1, 0.1), 0.1) 

– ((0.1, 0.9), 0.9) 

– ((0.9, 0.1), 0.9) 

– ((0.9, 0.9), 0.1) 

• Testing set 

– Use at least 121 pairs equally spaced on the unit 
square and plot the results 

– Omit the training set (if desired) 
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An Example (continued): Network 

Architecture 
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An Example (continued): Network 

Architecture 

Sample 

input 

0.1 

0.9 

Target 

output 

0.9 1 

1 

1 
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Feedforward Network Training by 

Backpropagation: Process Summary 

• Select an architecture 

• Randomly initialize weights 

• While error is too large 

– Select training pattern and feedforward to find 
actual network output 

– Calculate errors and backpropagate error signals  

– Adjust weights 

• Evaluate performance using the test set 
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An Example (continued): Network 

Architecture 

Sample 

input 

0.1 

0.9 

Actual 

output 

??? 1 

1 

1 

?? 

?? 

?? 

?? 

?? 

?? 

?? 

?? 
?? 

Target 

output 

0.9 


